Для успешной сдачи ЕГЭ нужно знать, как решать задачи на вероятность. Эту тему проходят в школе уже в 8-9 классе. Но многие ученики приходят в тупик при решении этих задач. Для их решения нужно быть очень внимательным и грамотно работать с формулами.
В этой статье разберем задачи по теории вероятностей по принципу от простого к сложному, научимся работать с формулой и разберем особенности решения отдельных типов задач.
-
- Что такое вероятность простыми словами
- Как решать задачи с перечислением: примеры решения задач
- Как решать задачи с фиксированными элементами: примеры решения задач
- Как решать задачи с двумя кубиками: используем таблицы
- Независимые события в теории вероятностей
- Число сочетаний: учимся работать с формулой на примерах
Что такое вероятность простыми словами
Вся наша жизнь состоит из случайных событий, которые могут либо произойти, либо нет. Например, вы сегодня идете на экзамен, по которому лучше остальных знаете один билет, достанется он именно вам или нет – случайность. Так как билетов всего 20, а вам нужно вытянуть всего 1, мы можем определить вероятность, с которой вам достанется желаемый билет. Эта вероятность будет составлять 1 шанс к 20 возможным, то есть 1 к 20 или 1/20 или 0,05.
Формула вероятности
Формула для вычисления вероятности события выглядит следующим образом:где P – вероятность события;
m — число вариантов, которые нас устраивают (число благоприятных исходов);
n – общее количество вариантов (возможных исходов).
Логично, что число благоприятных исходов всегда меньше, чем общее количество исходов, т.е. меньшее число мы делим на большее. Таким образом вероятность всегда находится в диапазоне от 0 до 1.
Приведем еще пример.
Задача 1
У нас есть пакет, в котором лежит 15 шариков, 9 из которых фиолетового цвета, а остальные белые. Какова вероятность вытащить из пакета один белый шарик?
Решение. Итак, общее количество белых шариков 15 – 9 = 6 штук, следовательно количество благоприятных исходов нашего события – 6. Общее количество возможных исходов – 15. Подставляем в формулу и получаем:
Таким образом, вероятность вытащить белый шарик равна 6/15.
Ответ: 6/15
Задачи на вероятность нужно читать внимательно, чтобы не допускать досадных ошибок. Например, вот в такой задаче.
Задача 2
В автомате, продающем, маленькие мячики есть мячи 5 цветов: 21 синих, 30 красных, 15 зеленых, 8 белых, а остальные желтые. Всего в автомате 90 мячиков. Какова вероятность, что Коле достанется мяч не синего цвета.
Решение. Мы обращаем внимание на то, что Коле должен достаться мяч НЕ синего цвета, а любого другого. Многие ученики просто не замечают частицу НЕ и ищут вероятность выпадения именно синего мяча, и естественно допускаю ошибку. Внимательно читаем условия задачи.
Итак, общее количество возможных вариантов – 90. Нам нужен любой мяч, кроме синего. Следовательно, количество вариантов, когда выпадет не синий мяч равно 90 – 21 = 69. Таким образом, вероятность того, что выпадет мячик любого цвета, кроме синего, равна:
Ну и разберем еще задачу.
Задача 3
На конкурсе выступают 11 участников из Казани, 6 участников из Нижнего Новгорода, 3 участника из Москвы и 7 участников из Твери. Порядок выступления в конкурсе определяется жеребьевкой. Какова вероятность того, что последним будем выступать конкурсант из Нижнего Новгорода? Результат округлите до сотых.
Решение. Итак, представим, что все конкурсанты подошли к барабану, где лежат номерки и тянут по одному номерку. Общее количество конкурсантов n = 11 + 6 + 3 + 7 = 27. Нас интересует, какова вероятность того, что один из конкурсантов из Нижнего Новгорода вытянет номерок с цифрой 27. Конкурсантов из Нижнего Новгорода всего 6, следовательно m = 6. Таким образом, вероятность будет равна:Как представить в виде десятичной дроби?
Очень просто. Нужно разделить 6,0000 на 27 уголком. Тогда вы получите 0,222… или округляя до сотых 0,22.
Как решать задачи с перечислением
Этот тип задач отличается от предыдущих лишь тем, что в задаче предметы поименованы. А вычисления выполняются по той же формуле:
Приведем пример такой задачи.
Задача 4
В портфеле у Васи лежали учебники по алгебре, геометрии, химии, биологии и литературе. Вася не глядя вынимает один учебник, какова вероятность того, что он вытянул алгебру?
Решение. Не смотря на то, что теперь предметы поименованы, принцип решения задачи остался прежним. Общее количество вариантов (т.е. учебников в портфеле) – 5. Нужный нам вариант (т.е. учебник по алгебре) – 1. Следовательно, вероятность нужного нам события равна:
Р = = 0,2
Как решать задачи с фиксированными элементами: разбираем на примере
Задачи на вероятность с фиксированными элементами сводятся к стандартным задачам на вероятность, но из элементов m и n нужно вычесть 1.
Давайте разберемся на примере.
Задача 5
Задача 8. В соревнованиях по борьбе участвуют 73 участника. Из них 25 участников из Москвы, в том числе Б. Егоров. На пары участники разбиваются с помощью жеребьевки. Какова вероятность того, что противником Б. Егорова станет участник из Москвы? Результат округлите до сотых.
Решение. В этой задаче есть фиксированный элемент – Б. Егоров. Это фиксированный элемент мы должны вычесть из элементов m и n.
Итак, общее количество участников – 73. Но Б. Егоров у нас уже выбран, поэтому он не участвует в жеребьевке. Следовательно, его мы исключаем из общего количества и получаем n = 72. Нас интересуют только участники из Москвы, их 25. Но опять же Б. Егоров у нас уже выбран, поэтому он не участвует в жеребьевке. Следовательно, количество устраивающих нас вариантов m = 24. А теперь считаем по нашей формуле:Таким образом, вероятность того, что противником Б. Егорова станет участник из Москвы равна 0,33.
Ответ: 0,33
Еще раз обратим внимание. Если в задаче есть фиксированный элемент, то мы вычитаем единицу из m и n, а дальше решаем задачу по стандартной формуле нахождения вероятности.
Как решать задачи с двумя кубиками: используем таблицы
Таблицы полезны при решении задач, где речь идет о двух игральных кубиках. Например.
Задача 6
Петя подбросил два игральных кубика. Какова вероятность того, что в сумме выпадет не менее 9 очков.
Решение. Вот в таких задачах удобнее всего построить таблицу. По горизонтали мы размещаем очки, которые могут выпасть на первом кубике, т.е. числа от 1 до 6. А по вертикали мы размещаем числа, которые могут выпасть на втором кубике, т.е. также числа от 1 до 6. Начертим таблицу:
Далее заполняем таблицу. Для этого мы вписываем сумму чисел, которые находятся на пересечении этой ячейки. Например, заполним первую строку. В ячейке на пересечении двух единиц у нас получится 1+1 = 2, далее пересекаются 2 и 1 получаем 2 +1 = 3, далее 3 + 1 = 4, далее 4 + 1 = 5, далее 5 + 1 = 6 и в последней ячейке этой строки получим 6 + 1 = 7Таким образом, заполняем всю таблицу и получаем:Мы получили таблицу со всеми возможными вариантами выпадения значений двух кубиков и их сумму.
Теперь вернемся к нашей задаче. Нам требовалось найти вероятность того, что на кубиках выпадет сумма не менее 9 очков. Следовательно, отмечаем в таблице значения больше или равные 9:Таким образом, количество вариантов, которые нас устроят (считаем количество обведенных чисел), m = 10
А общее количество возможных вариантов выпадения значений кубиков: n = 6 * 6 = 36
Следовательно, вероятность того, что выпадет тот вариант, который нас устроит, равна:Итак, вероятность того, что на кубиках выпадет сумма не менее 9 очков, равна 0,27.
Ответ: 0,27
Задача 7
Маша подбрасывает два игральных кубика. Какова вероятность того, что в сумме на кубиках выпадет 6 очков? Результат округлите до сотых.
Решение. Берем нашу таблицу и находим значения, когда на кубиках сумма составит 6 очков:Итак, количество вариантов, которые нас устроят (считаем количество обведенных чисел), m = 5.
А общее количество возможных вариантов выпадения значений кубиков: n = 6 * 6 = 36
Следовательно, вероятность того, что выпадет тот вариант, который нас устроит, равна:Напомним, чтобы 5/36 перевести в десятичную дробь, необходимо разделить столбиком 5,00000 на 36, в результате чего получим 0,13888. Округляем до сотых и получаем 0,14.
Итак, вероятность того, что на кубиках выпадет сумма 6 очков, равна 0,14.
Независимые события в теории вероятностей
Если вероятность появления одного события не зависит от появления другого события, и наоборот, то такие события называются независимыми.
Если события независимые, то их вероятности перемножаются. В результате этого мы получаем вероятность возникновения этих событий одновременно.
Давайте рассмотрим задачи с независимыми событиями.
Задача 8
Стрелок стреляет 6 раз по мишеням. Вероятность попадания стрелка в мишень при каждом выстреле равна 0,8. Какова вероятность того, что стрелок попадет в мишень все 6 раз подряд? Результат округлите до сотых.
Решение. В задаче происходит 6 независимых событий – 6 выстрелов. Вероятность каждого из них – 0,8. Чтобы найти вероятность возникновения этих независимых событий одновременно необходимо перемножить вероятности этих событий. Таким образом:
Р = 0,8 * 0,8 *0,8 * 0,8 *0,8 * 0,8 = 0,262144
Округляем результат до сотых и получаем 0,26.
Итак, вероятность того, что стрелок попадет в мишень все 6 раз подряд, равна 0,26.
Ответ: 0,26
Рассмотрим еще одну задачу, чуть сложнее.
Задача 9
Стрелок стреляет 6 раз по мишеням. Вероятность попадания стрелка в мишень при каждом выстреле равна 0,8. Какова вероятность того, что стрелок первые 2 раза промахнется, а остальные 4 раза попадет в цель? Результат округлите до сотых.
Решение. В задаче происходит 6 независимых событий – 6 выстрелов. Вероятность того, что стрелок попадет или не попадет в мишень, равна 1. Вероятность того, что стрелок попадет в мишень, равна 0,8. Тогда вероятность того, что не попадет в мишень, равна 1 — 0,8 = 0,2. Нам нужно найти вероятность, когда стрелок два раза промахнется, а потом четыре раза попадет. Перемножаем соответствующие вероятности:
Р = 0,2 * 0,2 * 0,8 * 0,8 * 0,8 * 0,8 = 0,016384
Округляем 0,016384 до сотых и получаем 0,02.
Итак, вероятность того, что стрелок два раза промахнется, а потом четыре раза попадет, равна 0,02.
Число сочетаний из n по m
Задача 10
Маше нужно выбрать из 8 книг 2 книги. Сколькими способами она может это сделать?
Мы понимаем, что здесь может быть большое количество вариантов сочетаний книг. Чтобы вычислить их количество нужно знать формулу числа сочетаний из n по m: где С – это число сочетаний
n – количество элементов, из которого нужно выбрать
m – количество элементов, которое нужно выбрать
В формуле присутствует факториал. Записывается факториал следующим образом: n!, 5!, 7! Напомним, что это такое.
Факториал – это произведение всех натуральных чисел от 1 до основания факториала. Основание факториала – это число, которое стоит перед знаком «!». Т.е. факториал 5! имеет основание 5 и найти его можно следующим образом:
5! = 1 * 2 * 3 * 4 * 5
А факториал n! имеет основание n:
n! = 1 * 2 * 3 * 4 * 5 * … * n
Часто ученики путают, что в ставить внизу, а что наверху, т.е. меняют n и m местами. Применительно к нашей задаче можно перепутать, что ставить наверху: 2 или 8. Запомнить, что ставить наверху, а что внизу – легко. Сверху всегда стоит наименьшее число, т.е. в нашем случае – это 2.
Давайте вернемся к нашей задаче. Применяем формулу и получаем: Обратите внимание, что не нужно умножать в числителе все натуральные числа от 1 до 8, у вас это отнимет очень много времени. Достаточно подробно расписать числитель и знаменатель, сделать сокращение и все легко считается.
Итак, Маша может выбрать книги 28 способами.
Ответ: 28
Давайте разберем еще одну задачу.
Задача 11
Из 15 школьников нужно отправить 2 учеников на дежурство. Сколькими способами можно это сделать?
Решение. Применяем нашу формулу:
Ответ: 105 способов
Итак, сегодня мы разбирались, как решать задачи на вероятность. Теперь вы можете приступить к практике, ведь только большое количество тренировок позволит вам успешно справиться с заданиями ЕГЭ. Еще больше информации для подготовки к ЕГЭ по математике вы можете получить на нашем сайте, а также .